A. Operasi Hitung Bentuk Aljabar
Pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut.
1. 2pq 4. x2 + 3x –2Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut.
2. 5x + 4 5. 9x2 – 3xy + 8
3. 2x + 3y –5
- Suku yang memuat variabel x, koefisiennya adalah 5.
- Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah.
1. Penjumlahan dan Pengurangan Bentuk Aljabar
Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan
mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya,
sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil,
berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk
aljabar, sebagai berikut.
a. Sifat Komutatif
a + b = b + a, dengan a dan b bilangan riil
b. Sifat Asosiatif
(a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil
c. Sifat Distributif
a (b + c) = ab + ac, dengan a, b, dan c bilangan riil
Agar kamu lebih memahami sifat-sifat yang berlaku pada bentuk aljabar, perhatikan contoh-contoh soal berikut.
Contoh Soal :
Sederhanakan bentuk-bentuk aljabar berikut. a. 6mn + 3mn b. 16x + 3 + 3x + 4 c. –x – y + x – 3 d. 2p – 3p2 + 2q – 5q2 + 3p e. 6m + 3(m2 – n2) – 2m2 + 3n2 Jawab: a. 6mn + 3mn = 9mnContoh Soal : Tentukan hasil dari: a. penjumlahan 10x2 + 6xy – 12 dan –4x2 – 2xy + 10, b. pengurangan 8p2 + 10p + 15 dari 4p2 – 10p – 5. Jawab: a. 10x2 + 6xy – 12 + (–4x2 – 2xy + 10) = 10x2 – 4x2 + 6xy – 2xy – 12 + 10 |
2. Perkalian Bentuk Aljabar
Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat
distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk
lebih jelasnya, pelajari uraian berikut.a. Perkalian Suku Satu dengan Suku Dua
Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Gunakan hukum distributif untuk menyelesaikan perkalian berikut. a. 2(x + 3) c. 3x(y + 5) b. –5(9 – y) d. –9p(5p – 2q) Jawab: a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x |
Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan. a. (x + 5)(x + 3) c. (2x + 4)(3x + 1) b. (x – 4)(x + 1) d. (–3x + 2)(x – 5) Jawab: a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3Contoh Soal : Diketahui sebuah persegipanjang memiliki panjang (5x + 3) cm dan lebar (6x– 2) cm. Tentukan luas persegipanjang tersebut. Jawab: Diketahui : p = (5x + 3) cm dan l = (6x – 2) cm |
(a + b)(c + d) = (a + b)c + (a + b)d
= ac + bc + ad + bd
= ac + ad + bc + bd
Secara skema, perkalian ditulis:
Cara seperti ini merupakan cara lain yang dapat digunakan untuk menyelesaikan perkalian antara dua buah suku bentuk aljabar. Pelajari contoh soal berikut.
Contoh Soal :
Selesaikan perkalian-perkalian berikut dengan menggunakan cara skema. a. (x + 1)(x + 2) c. (x – 2)(x + 5) b. (x + 8)(2x + 4) d. (3x + 4)(x – 8) Jawab: a. (x + 1)(x + 2) = x2 + 2x + x + 2 |
3. Pembagian Bentuk Aljabar
Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut.
Contoh Soal :
Tentukan hasil pembagian berikut. a. 8x : 4 c. 16a2b : 2ab b. 15pq : 3p d. (8x2 + 2x) : (2y2 – 2y) Jawab: |
4. Perpangkatan Bentuk Aljabar
Di Kelas VII, kamu telah mempelajari definisi bilangan berpangkat. Pada bagian ini materi tersebut akan dikembangkan, yaitu memangkatkan bentuk aljabar. Seperti yang telah kamu ketahui, bilangan berpangkat didefinisikan sebagai berikut.Untuk a bilangan riil dan n bilangan asli.
Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. a5 = a × a × a × a × aSekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2 dapat ditulis:
b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3
c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p)
= ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4
d. (4x2y)2 = (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2
(a + b)2 = (a + b) (a + b)Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai:
= (a + b)a + (a + b)b
= a2 + ab + ab + b2
= a2 + 2ab + b2
(a – b)2 = (a – b) (a – b)
= (a – b)a + (a – b)(–b)
= a2 – ab – ab + b2
= a2 – 2ab + b2
Contoh Soal :
|
(a + b)3 = (a + b) (a + b)2Untuk menguraikan bentuk aljabar (a + b)2, (a + b)3, dan (a + b)4, kamu dapat menyelesaikannya dalam waktu singkat. Akan tetapi, bagaimana dengan bentuk aljabar (a + b)5, (a + b)6, (a + b)7, dan seterusnya? Tentu saja kamu juga dapat menguraikannya, meskipun akan memerlukan waktu yang lebih lama. Untuk memudahkan penguraian perpangkatan bentuk-bentuk aljabar tersebut, kamu bisa menggunakan pola segitiga Pascal . Sekarang, perhatikan pola segitiga Pascal berikut.
= (a + b) (a2 + 2ab + b2) (a+b)2 = a2 + 2ab + b2
= a(a2 + 2ab + b2 ) + b (a2 + 2ab + b2 ) (menggunakan cara skema)
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3 (suku yang sejenis dikelompokkan)
= a3 + 2a2b + a2b + ab2 +2ab2 + b3 (operasikan suku-suku yang sejenis)
= a3 + 3a2b + 3ab2 + b3
Hubungan antara segitiga Pascal dengan perpangkatan suku dua bentuk aljabar adalah sebagai berikut.
Sebelumnya, kamu telah mengetahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya pasti sama, yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan suku dua (a + b)3, (a + b)4, (a + b)5, dan seterusnya dapat diuraikan sebagai berikut.
(a + b)3 = a3 + 3a2b + 3ab2 + b3Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Pelajarilah uraian berikut.
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
dan seterusnya.
(a – b)2 = a2 – 2ab + b2
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5
B. Pemfaktoran Bentuk Aljabar
1. Pemfaktoran dengan Sifat Distributif
Di Sekolah Dasar, kamu tentu telah mempelajari cara memfaktorkan
suatu bilangan. Masih ingatkah kamu mengenai materi tersebut? Pada
dasarnya, memfaktorkan suatu bilangan berarti menyatakan suatu bilangan
dalam bentuk perkalian faktor-faktornya. Pada bagian ini, akan
dipelajari cara-cara memfaktorkan suatu bentuk aljabar dengan
menggunakan sifat distributif. Dengan sifat ini, bentuk aljabar ax + ay
dapat difaktorkan menjadi a(x + y), di mana a adalah faktor persekutuan
dari ax dan ay. Untuk itu, pelajarilah Contoh Soal berikut.
Contoh Soal :
Faktorkan bentuk-bentuk aljabar berikut. a. 5ab + 10b c. –15p2q2 + 10pq b. 2x – 8x2y d. 1/2 a3b2 + 1/4 a2b3 Jawab: a. 5ab + 10b |
2. Selisih Dua Kuadrat
Perhatikan bentuk perkalian (a + b)(a – b). Bentuk ini dapat ditulis(a + b)(a – b) = a2 – ab + ab – b2
= a2 – b2
Jadi, bentuk a2 – b2 dapat dinyatakan dalam bentuk perkalian (a + b) (a – b).
Bentuk a2 – b2 disebut selisih dua kuadrat
Contoh Soal :
Faktorkan bentuk-bentuk berikut. a. p2 – 4 c. 16 m2 – 9n2 b. 25x2 – y2 d. 20p2 – 5q2 Jawab: a. p2 – 4 = (p + 2)(p – 2) |
3. Pemfaktoran Bentuk Kuadrat
a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1Perhatikan perkalian suku dua berikut.
(x + p)(x + q) = x2 + qx + px + pq
= x2 + (p + q)x + pq
Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq.
Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.
Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut.
Contoh Soal :
Faktorkanlah bentuk-bentuk berikut. a. x2 + 5x + 6 b. x2 + 2x – 8 Jawab: a. x2 + 5x + 6 = (x + …) (x + …) |
Sebelumnya, kamu telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1.
Perhatikan perkalian suku dua berikut.
(x + 3) (2x + 1) = 2x2 + x + 6x + 3
= 2x2 + 7x + 3
Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2x2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.
2x2 + 7x + 3 = 2x2 + (x + 6 x) +3 (uraikan 7x menjadi penjumlahan dua suku yaitu pilih ( x + 6x )
= (2x2 + x) + (6x + 3)
= x(2x + 1) + 3(2x + 1) (Faktorkan menggunakan sifat distributif)
= (x + 3)(2x+1)
Dari uraian tersebut dapat kamu ketahui cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1 sebagai berikut.
- Uraikan bx menjadi penjumlahan dua suku yang apabila kedua suku tersebut dikalikan hasilnya sama dengan (ax2)(c).
- Faktorkan bentuk yang diperoleh menggunakan sifat distributif
Contoh Soal :
Faktorkan bentuk-bentuk berikut. a. 2x2 + 11x + 12 b. 6x2 + 16x + 18 Jawab: a. 2x2 + 11x + 12 = 2x2 + 3x + 8x + 12 = (2x2 + 3x) + (8x + 12) = x(2x + 3) + 4(2x + 3) = (x + 4)(2x + 3) Jadi, 2x2 + 11x + 12 = (x + 4)(2x + 3). b. 6x2 + 16x + 8 = 6x2 + 4x + 12x + 8 = (6x2 + 4x) + (12x + 8) = 2x(3x + 2) + 4(3x + 2) = (2x + 4)(3x + 2) Jadi, 6x2 + 16x + 8 = (2x + 4)(3x +2) |
C. Pecahan dalam Bentuk Aljabar
1. Penjumlahan dan Pengurangan Pecahan Bentuk Aljabar
Di Kelas VII, kamu telah mempelajari cara menjumlahkan dan mengurangkan pecahan. Pada bagian ini, materi tersebut dikembangkan sampai dengan operasi penjumlahan dan pengurangan pecahan bentuk aljabar. Cara menjumlahkan dan mengurangkan pecahan bentuk aljabar adalah sama dengan menjumlahkan dan mengurangkan pada pecahan biasa,yaitu dengan menyamakan penyebutnya terlebih dahulu. Agar kamu lebih memahami materi ini, pelajari contoh-contoh soal berikut.
Contoh Soal :
Contoh Soal : |
2. Perkalian dan Pembagian Pecahan Bentuk Aljabar
a. PerkalianCara mengalikan pecahan bentuk aljabar sama dengan mengalikan pecahan biasa, yaitu
Agar kamu lebih memahami materi perkalian pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
|
Aturan pembagian pada pecahan bentuk aljabar sama dengan aturan pembagian pada pecahan biasa, yaitu :
Contoh Soal :
|
3. Perpangkatan Pecahan Bentuk Aljabar
Pada bagian sebelumnya, kamu telah mengetahui bahwa untuk a bilangan riil dan n bilangan asli, berlaku:Definisi bilangan berpangkat tersebut berlaku juga pada pecahan bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
Contoh Soal :
|
4. Penyederhanaan Pecahan Bentuk Aljabar
Masih ingatkah kamu materi penyederhanaan pecahan yang telah
dipelajari di Kelas VII? Coba jelaskan dengan menggunakan kata-katamu
sendiri. Sekarang kamu akan mempelajari cara menyederhanakan pecahan
bentuk aljabar. Untuk itu, pelajari uraian berikut ini.
a.
Untuk menyederhanakan bentuk , tentukan faktor persekutuan dari pembilang dan penyebutnya.
Kemudian, bagilah pembilang dan penyebutnya dengan faktor persekutuan tersebut.
Faktor persekutuan dari 5x dan 10 adalah 5.
Jadi,
b.
Faktor persekutuan dari 9p dan 27q adalah 9.
Jadi,
c.
Untuk menyederhanakan bentuk
tentukan faktor penyebutnya sehingga
Jadi,
Agar kamu lebih memahami materi penyederhanaan pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh soal :
|
No comments:
Post a Comment